1,073 research outputs found

    Architecturally diverse proteins converge on an analogous mechanism to inactivate Uracil-DNA glycosylase

    Get PDF
    Uracil-DNA glycosylase (UDG) compromises the replication strategies of diverse viruses from unrelated lineages. Virally encoded proteins therefore exist to limit, inhibit or target UDG activity for proteolysis. Viral proteins targeting UDG, such as the bacteriophage proteins ugi, and p56, and the HIV-1 protein Vpr, share no sequence similarity, and are not structurally homologous. Such diversity has hindered identification of known or expected UDG-inhibitory activities in other genomes. The structural basis for UDG inhibition by ugi is well characterized; yet, paradoxically, the structure of the unbound p56 protein is enigmatically unrevealing of its mechanism. To resolve this conundrum, we determined the structure of a p56 dimer bound to UDG. A helix from one of the subunits of p56 occupies the UDG DNA-binding cleft, whereas the dimer interface forms a hydrophobic box to trap a mechanistically important UDG residue. Surprisingly, these p56 inhibitory elements are unexpectedly analogous to features used by ugi despite profound architectural disparity. Contacts from B-DNA to UDG are mimicked by residues of the p56 helix, echoing the role of ugi’s inhibitory beta strand. Using mutagenesis, we propose that DNA mimicry by p56 is a targeting and specificity mechanism supporting tight inhibition via hydrophobic sequestration

    Exact distributed kinetic Monte Carlo simulations for on-lattice chemical kinetics: lessons learnt from medium- and large-scale benchmarks

    Get PDF
    Kinetic Monte-Carlo (KMC) simulations have been instrumental in multiscale catalysis studies, enabling the elucidation of the complex dynamics of heterogeneous catalysts and the prediction of macroscopic performance metrics, such as activity and selectivity. However, the accessible length- and time-scales have been a limiting factor in such simulations. For instance, handling lattices containing millions of sites with “traditional” sequential KMC implementations is prohibitive owing to large memory requirements and long simulation times. We have recently established an approach for exact, distributed, lattice-based simulations of catalytic kinetics which couples the Time-Warp algorithm with the Graph-Theoretical KMC framework, enabling the handling of complex adsorbate lateral interactions and reaction events within large lattices. In this work, we develop a lattice-based variant of the Brusselator system, a prototype chemical oscillator pioneered by Prigogine and Lefever in the late 60’s, to benchmark and demonstrate our approach. This system can form spiral wave patterns, which would be computationally intractable with sequential KMC, while our distributed KMC approach can simulate such patterns 16 and 36 times faster with 625 and 1600 processors, respectively. The medium- and large-scale benchmarks thus conducted, demonstrate the robustness of the approach, and reveal computational bottlenecks that could be targeted in further development efforts

    Coupling the time-warp algorithm with the graph-theoretical kinetic Monte Carlo framework for distributed simulations of heterogeneous catalysts

    Get PDF
    Despite the successful and ever widening adoption of kinetic Monte Carlo (KMC) simulations in the area of surface science and heterogeneous catalysis, the accessible length scales are still limited by the inherently sequential nature of the KMC framework. Simulating long-range surface phenomena, such as catalytic reconstruction and pattern formation, requires consideration of large surfaces/lattices, at the μm scale and beyond. However, handling such lattices with the sequential KMC framework is extremely challenging due to the heavy memory footprint and computational demand. The Time-Warp algorithm proposed by Jefferson [ACM. Trans. Program. Lang. Syst., 1985. 7: 404-425] offers a way to enable distributed parallelization of discrete event simulations. Thus, to enable high-fidelity simulations of challenging systems in heterogeneous catalysis, we have coupled the Time-Warp algorithm with the Graph-Theoretical KMC framework [J. Chem. Phys., 134(21): 214115; J. Chem. Phys., 139(22): 224706] and implemented the approach in the general-purpose KMC code Zacros. We have further developed a “parallel-emulation” serial algorithm, which produces identical results to those obtained from the distributed runs (with the Time-Warp algorithm) thereby validating the correctness of our implementation. These advancements make Zacros the first-of-its-kind general-purpose KMC code with distributed computing capabilities, thereby opening up opportunities for detailed meso-scale studies of heterogeneous catalysts and closer-than-ever comparisons of theory with experiments

    Impairments in Hemodynamic Responses to Orthostasis Associated with Frailty: Results from TILDA

    Get PDF
    Background: Dysregulated homeostatic response to stressors may underlie frailty in older adults. Orthostatic hypotension results from impairments in cardiovascular homeostasis and is implicated in falls and other adverse outcomes. This study aimed to characterise the relationships between orthostatic BP and heart rate recovery and frailty in an older population. Design: Cross-sectional study. Setting: Two health centres in the Republic of Ireland. Participants: 4334 adults aged 50 and older enrolled in The Irish Longitudinal Study on Ageing. Measurements: Continuous non-invasive blood pressure (BP) responses during active standing were captured by Finometer®. Frailty was assessed using the Cardiovascular Health Study criteria. Linear mixed models (random intercept) with piecewise splines were used to model differences in the rate of BP and heart rate recovery. Results: 93 (2.2%) participants were frail and 1366 (31.5%) were prefrail. Adjusting for age and sex, frailty was associated with a reduced rate of systolic BP recovery between 10-20 seconds post stand (frailty*time = -4.12 95%CI: -5.53 - -2.72) and with subsequent deficits in BP between 20-50 seconds. Similar results were seen for diastolic BP and heart rate. Further adjustment for health behaviours, morbidities, and medications reduced, but did not attenuate these associations. Of the 5 frailty criteria, only slow gait speed was consistently related to impaired BP and heart rate responses in the full models. Conclusions: Frailty, and particularly slow gait speed, was associated with reduced rate of recovery in BP and heart rate recovery following active standing. Impaired BP recovery may represent a marker of physiological frailty
    corecore